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ABSTRACT

We study a peridynamic composite modeling technology based on the discontinuous Galerkin finite
element method, implemented in the commercial LS-DYNA software, for modeling and prediction of
failure in carbon fiber reinforced polymer composites. The proposed technology is developed for the
material failure analysis at the meso-scale, which provides the prevailing fiber-matrix interaction
mechanism, without adoption of the representative volume element method and thus avoiding complicated
numerical calibration procedures. Three types of experimental tests—in-plane coupon test, out-of-plane
coupon test, and a component crash test—are simulated in a high-performance computing environment to
assess the performance of the proposed peridynamic composite modeling technology.

1. INTRODUCTION

The technical challenges in the current state of the art in numerical modeling of carbon fiber reinforced
polymer (CFRP) composites consist of numerical calibration of material constants, simulation of
machining/jointing processes, and prediction of crash behavior. In essence, those numerical challenges are
strongly related to the inability to analyze material failure problems using the classical homogenization
theory in the finite element method (FEM) for CFRP composites. For instance, a numerical assessment of
anisotropic material properties for CFRP composites in non-failure analysis can be achieved using the
representative volume element (RVE) approach. Various failure models can then be utilized to characterize
material damage, including delamination, in constitutive models. In this phenomenological approach, the
setting of material constants for the constitutive equations often requires a trial-and-error tuning through
experimental validation. This numerical calibration procedure could be strongly problem-dependent and
numerically sensitive. Besides this issue, the existing finite element techniques inevitably experience
numerical difficulties in modeling material failure in CFRP machining/jointing simulations across different
relevant material length scales. Specifically, the continuity assumption in the FEM is inadequate to
describe the kinematic discontinuity of displacement fields at the macro-scale for material separation
analysis. Compared to the technical challenges in calibrating the material constants and simulating the
machining/jointing processes, prediction of crash behavior in CFRP products is even more challenging.

An innovative peridynamic modeling technology for CFRP composites was presented in Ren et al. [2018]
and implemented by Livermore Software Technology in the commercial LS-DYNA software, based on the
discontinuous Galerkin FEM. This technology was developed for the material failure analysis at the
meso-scale, which provides the prevailing fiber-matrix interaction mechanism, without adoption of the
RVE method and thus avoiding complicated numerical calibration procedures. Since the proposed
meso-scale method considers the decoupling effect between in-plane and delamination failures without
element erosion, the simulation of the machining/jointing processes is expected to be very effective and
stable. For the same reasons, the proposed meso-scale method is promising for modeling crash behavior in
CFRP products. In this report, we present an assessment of the performance of this peridynamic modeling
technology through high-performance computing (HPC). Specifically, an in-plane coupon test, an
out-of-plane coupon test, and a component crash test are simulated.

This report is organized as follows. In Section 2, we review the bond-based peridynamic theory, the finite
element discretization used, and the peridynamic model for fiber reinforced composite (FRC) laminates
proposed in Ren et al. [2021], which builds on the modeling technology presented in Ren et al. [2018].
Section 3 describes the tests and reports the corresponding results. A summary is provided in Section 4.
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2. A PERIDYNAMIC MODEL FOR FAILURE ANALYSIS IN FIBER-REINFORCED
COMPOSITE LAMINATES

2.1 BOND-BASED PERIDYNAMICS

The peridynamic theory is a nonlocal reformulation of the classical theory of continuum mechanics
proposed in Silling [2000], which is suitable for modeling material failure and damage due to its lack of
differentiability assumption on displacement fields. Given a body Ω ⊂ Rd with d the spatial dimension, the
bond-based peridynamic equation of motion is given by

ρ(x)
∂2u
∂t2 (x, t) =

∫
Hx

f(η, ξ, t)dVx′ + b(x, t) x ∈ Ω, t > 0, (1)

where ρ is the mass density, u is the displacement field, b is a prescribed body force density field, and f is
the pairwise force function. We employ the peridynamic notation for a bond ξ := x′ − x and the relative
displacement η := u(x′, t) − u(x, t). Additionally, we define the peridynamic neighborhood as

Hx :=
{
x′ ∈ Ω : ‖x′ − x‖ 6 δ

}
,

where δ > 0 is the peridynamic horizon. For microelastic materials, each bond has an associated pairwise
potential function w such that f = ∂w

∂η . The elastic energy density at x ∈ Ω and t > 0 is given by

W(x, t) =
1
2

∫
Hx

w(η, ξ, t)dVx′ . (2)

Equation (1) can model a limited class of materials. Specifically, in the case of isotropy, (1) is restricted to
materials with a Poisson’s ratio ν = 1/4 in three-dimensional and plane strain settings and ν = 1/3 in
two-dimensional and plane stress settings (see Silling [2000], Trageser and Seleson [2020]). To account for
arbitrary Poisson’s ratios, the generalized state-based peridynamic theory has been presented in Silling
et al. [2007]. Nevertheless, in this report, we only consider bond-based peridynamic models.

2.2 WEAK FORMULATION AND FINITE ELEMENT DISCRETIZATION

Following Ren et al. [2017], a weak formulation of (1) can be written as∫
Ω

ρ(x)
∂2u
∂t2 (x, t) · v(x)dVx =

∫
Ω

∫
Hx

f(η, ξ, t)dVx′ · v(x)dVx +

∫
Ω

b(x, t) · v(x)dVx, (3)

where u ∈ S(Ω) and v ∈ S′(Ω), and the functional spaces are given by

S(Ω) := {u ∈ L2(Ω)|u = g in ΩD},

S′(Ω) := {v ∈ L2(Ω)|v = 0 in ΩD},

where g is a function providing displacement boundary conditions in the domain ΩD. Employing the
discontinuous Galerkin finite element discretization for the ith component of (3), we obtain

ng∑
g=1

ρ(xg)
∂2ui

∂t2 (xg, t)NB(xg)∆Vg =

ng∑
g=1

n′g∑
g′=1

fi(ηg,g′ , ξg,g′ , t)∆Vg′NB(xg)∆Vg+

ng∑
g=1

bi(xg, t)NB(xg)∆Vg, i = 1, 2, 3,

where ng is the number of Gauss points xg in Ω, n′g is the number of neighbors x′g of xg, NB is the Bth finite
element shape function, ξg,g′ := xg′ − xg, and ηg,g′ := u(xg′ , t) − u(xg, t).
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2.3 MODELING FIBER REINFORCED COMPOSITE LAMINATES

An innovative peridynamic modeling technology for fiber reinforced composite laminates was presented
in Ren et al. [2018]. This modeling technology is based on the following assumptions:

1. A laminate is decomposed into two components (see Figure 1a):

(a) Matrix material: a three-dimensional isotropic bulk material.

(b) Fiber material: a sequence of transversely isotropic plates immersed in the matrix material.

2. A lamina is simplified as a plane stress transversely isotropic medium with the plane of isotropy
perpendicular to the fiber orientation θ (see Figure 1b).

3. Points within a lamina only interact with points in the same lamina and in adjacent laminae (see
Figure 1c).

4. A lamina is discretized as a layer of surface elements (see Figure 1c).

5. Peridynamic bonds are classified as inner-layer or inter-layer bonds (see Figure 1c).

Here, all peridynamic bonds within a lamina are treated equally, and the discretization of a lamina is
independent of the fiber orientation.

Matrix material Fiber material

(a) Laminate decomposition into matrix and fiber materials

𝑥

𝑦

𝜃

12

(b) Lamina: transversely isotropic medium

Fiber orientation

Inner-layer bonds

Inter-layer bonds

Surface mesh

𝜑

(c) Laminate discretization

Figure 1. Illustration of the peridynamic model of a fiber reinforced composite laminate.

The peridynamic model of a FRC laminate is based on the prototype microelastic brittle peridynamic
model (see Silling and Askari [2005]) but extended to incorporate anisotropic behavior, and it is given by
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the following pairwise force function:

f(η, ξ, t) = µ(ξ, t)c(ξ)s(η, ξ)
ξ + η

‖ξ + η‖
, (4)

where c(ξ) is the bond constant, the bond stretch is defined by

s(η, ξ) :=
‖ξ + η‖ − ‖ξ‖

‖ξ‖
,

and µ(ξ, t) is a history-dependent Boolean-valued function used to model bond breaking, as explained
below. The corresponding pairwise potential is

w(η, ξ, t) =
1
2
µ(ξ, t)c(ξ)s2(η, ξ)‖ξ‖. (5)

Following the laminate decomposition in Figure 1a, the bond constant is decomposed into isotropic and
anisotropic contributions. The bond constant of an inner-layer bond is given by

c(ξ) = cmt + c f b(ϕ), (6)

where the constant cmt and the function c f b(ϕ) represent the contributions of the matrix material and fiber
material, respectively, to the bond response with ϕ being the relative angle between the bond and the fiber
orientation of the lamina (see Figure 1c). To represent the anisotropy of the lamina, c f b(ϕ) is modeled
using an 8th-order spherical harmonic expansion following Ghajari et al. [2014]:

c f b(ϕ) = A00 + A20P0
2(cos(ϕ)) + A40P0

4(cos(ϕ)) + A60P0
6(cos(ϕ)) + A80P0

8(cos(ϕ)), (7)

where P0
n, n = 0, 2, 4, 6, 8, are associated Legendre polynomials and A00, A20, A40, A60, and A80 are the

corresponding constants. The calibration of the constants is performed using an elastic energy density
equivalence between the classical theory of linear elasticity and peridynamics for uniform strain
deformations, separately for the matrix material and the fiber material. Specifically, for the matrix material,
we calibrate the constant cmt using the classical strain energy density of an isotropic plane stress medium.
In contrast, the calibration of the constants A00, A20, A40, A60, and A80 employs the classical strain energy
density of an anisotropic lamina. For further details, see Ren et al. [2021].

The bond constant of an inter-layer bond is given by

c(ξ) = cmt + c f b(ϕ, ϕ′), (8)

where ϕ and ϕ′ are the relative angles between the bond and the fiber orientations θ and θ′ of the laminae
where x and x′, respectively, are located. The proposed formula for c f b(ϕ, ϕ′) is:

c f b(ϕ, ϕ′) =
c f b(ϕ)µθ + c f b(ϕ′)µθ′

µθ + µθ′
, (9)

where µθ and µθ′ are the off-axis shear moduli of each lamina. For further details, see Ren et al. [2021].

In order to model failure, an anisotropic critical stretch criterion for bond breaking is proposed, inspired by
the one presented for isotropic materials in Silling and Askari [2005]. The goal of the proposed
bond-breaking criteria is to capture mixed failure modes, in particular in-plane failure and delamination.
For this purpose, we introduce six empirical failure constants, as follows:
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- s1t and s1c: tension and compression, respectively, failure constants for inner-layer bonds along the
fiber orientation.

- s2t and s2c: tension and compression, respectively, failure constants for inner-layer bonds
perpendicular to the fiber orientation.

- sdt and sdc: tension and compression, respectively, failure constants for inter-layer bonds
perpendicular to the fiber orientation.

For inner-layer bonds, the critical bond stretch, s0(ϕ), is given by

s0(ϕ) =

 s1t − 2(s1t − s2t)
ϕ
π tension,

s1c − 2(s1c − s2c)ϕπ compression,
(10)

and, for inter-layer bonds, the critical bond stretch, s0(ψ) is given by

s0(ψ) =

 sdt − 2(sdt − s1t)
ψ
π tension,

sdc − 2(sdc − s1c)ψπ compression,
(11)

where ψ is the angle between the bond and the laminate normal. For further details, see Ren et al. [2021].
A bond breaks (irreversibly) when the condition s(η, ξ) > s0 is met, where s0 = s0(ϕ) for inner-layer bonds
and s0 = s0(ψ) for inter-layer bonds. More specifically, µ(ξ, t) is given by (see Silling and Askari [2005])

µ(ξ, t) =

 1 s(η̃, ξ) < s0 for all times 0 6 t̃ 6 t,

0 otherwise,
(12)

where η̃ := u(x′, t̃ ) − u(x, t̃ ).

5



3. TESTS AND RESULTS

3.1 IN-PLANE COUPON TEST ANALYSIS

We perform tensile coupon test simulations (see illustration in Figure 2a) and compute the off-axis elastic
modulus, Eθ, of FRC laminates for different fiber orientations. A 2-layer unidirectional laminate is
employed with the material constants reported in Table 1, where ρ is the mass density, E1 and E2 are the
Young’s modulus along and perpendicular to the fiber orientation, respectively, ν12 is the corresponding
Poisson’s ratio∗, and µ is the shear modulus. The laminate dimensions are 75 mm × 15 mm × 0.2 mm, and
each lamina is discretized with 75 × 15 square elements. The peridynamic horizon is selected as
δ = 1.01∆x, where ∆x = 1 mm is the square element side length. A velocity boundary condition is imposed
on the right surface of the laminate, which linearly increases from 0 mm/s to 2 mm/s over the first
millisecond and then stays constant at 2 mm/s; the total simulation time is T = 2.5 ms. A zero
displacement boundary condition along the x-direction is imposed on the left surface of the laminate.

ρ [ton/mm3] E1 [GPa] E2 [GPa] ν12 µ [GPa]
1.65 × 10−9 135 8.5 0.34 4.8

Table 1. Material constants for the in-plane and out-of-plane coupon tests.

The stress at the right surface of the deformed laminate is computed by σ = F
A , where F is the total force

applied on the nodes at that surface and A = 15 mm × 0.2 mm = 3 mm2 is the area of that surface. The
horizontal strain of the deformed laminate is computed by ε = ∆L

L , where L = 75 mm is the length of the
laminate and ∆L is the change in that length. The numerical off-axis elastic modulus is then computed by

Enum
θ =

σ

ε
. (13)

We compare numerical results computed with (13) with corresponding analytical values for the off-axis
elastic modulus given by (see Reddy [2003]):

Eθ =
E1

cos4(θ) + cos2(θ) sin2(θ)
(
−2ν12 +

E1
µ

)
+ sin4(θ) E1

E2

, (14)

where θ is the fiber orientation. Figure 2b presents a comparison between numerical and analytical values
of the off-axis elastic modulus for various fiber orientations. A close match is obtained between the
numerical results and the analytical predictions.

𝑥

𝑦

75 mm

15 mm

(a) Illustration of the tensile coupon test.

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

(b) Off-axis elastic modulus profile.

Figure 2. Tensile coupon test simulation.
∗The Poisson’s ratio ν12 is used to decompose the laminae into the matrix and fiber materials (see Ren et al. [2021]).
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3.2 OUT-OF-PLANE COUPON TEST ANALYSIS

We perform three-point bending test simulations (see the simulation setting in Figure 3) and compute the
flexural rigidity, EIθ, of FRC laminates for different fiber orientations. An 8-layer unidirectional laminate
is employed with the material constants reported in Table 1. The laminate dimensions are 125 mm ×
15 mm × 2 mm, and each lamina is discretized with 50 × 6 square elements. The peridynamic horizon is
selected as δ = 1.01∆x, where ∆x = 2.5 mm is the square element side length. The laminate is supported
by two cylinders of diameter 4 mm and length 40 mm; the supports are equally distant from the center of
the laminate and the distance between their centers is L = 80 mm. The impactor is a cylinder of diameter
10 mm and length 40 mm. The impactor’s velocity in the negative z-direction linearly increases in
magnitude from 0 mm/s to 100 mm/s over the first millisecond and then stays constant at −100 mm/s, and
the impactor hits the laminate at the top center; the total simulation time is T = 25.5 ms. The supports and
the impactor are modeled as rigid bodies, and we employ the rigid wall contact algorithm in LS-DYNA.

The flexural rigidity is computed numerically as follows:

EInum
θ =

PL3

48wL/2
, (15)

where P is the force exerted at the center of the laminate and wL/2 is the corresponding displacement; note
that P/wL/2 is the slope of the corresponding force-displacement curve. We compute this slope using the
reaction force and displacement of the impactor. The analytical value of the flexural rigidity, EIθ, as a
function of the fiber orientation, θ, is obtained from Reddy [2003] (see Appendix A). The relative error is
computed as follows:

Relative Error =
|EInum

θ − EIθ|

EIθ
. (16)

𝐿 = 80 mm

40 mm 15 mm

125 mm
10 mm4mm 4mm

𝑥

𝑦

(a) Top view.

𝑥
𝑧

𝑦

(b) 3D view.

Figure 3. Three-point bending test setting.

Table 2 reports the numerical and analytical values obtained for the flexural rigidity for three fiber
orientations, demonstrating that a relatively close match is attained between these values.

θ [degree] EIθ [N mm2] EInum
θ [N mm2] Relative Error [%]

0 1,350,000 1,337,982 0.9
45 121,821 133,760 9.8
90 85,000 89,015 4.7

Table 2. Out-of-plane coupon test: flexural rigidity.
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3.3 COMPONENT CRASH TEST

To validate the failure response of the peridynamic model of a FRC laminate, we employ a hat shape
three-point bending test (see the simulation setting in Figure 4) and compute the acceleration profile in
time. A 24-layer laminate with stacking sequence [0/60/−60/0/60/−60]2S is employed with the material
constants reported in Table 3. The hat shape laminate dimensions are indicated in Figures 4a and 4b, and
each lamina has a thickness of 0.2 mm. From the 24 laminae, half conform the hat shape base and half the
hat shape top part. The base dimensions are 400 mm × 175.6 mm × 2.4 mm, and each lamina is discretized
with 114 × 44 square elements. The laminae in the hat shape top part employ the same discretization. The
peridynamic horizon is selected as δ = 0.8∆x, where ∆x = 4.0 mm is the square element side length. The
hat shape laminate is supported by two cylindrical shells of diameter 25 mm, length 186 mm, and thickness
0.1 mm; the supports are equally distant from the center of the hat shape laminate and the distance between
their centers is 400 mm (see Figure 4b). The impactor is a cylindrical shell of diameter 100 mm, length
186 mm, and thickness 0.1 mm (see Figure 4b). The supports and the impactor are all modeled as rigid
bodies with mass density 4.3647 gr/mm3 and Young’s modulus 391.709 GPa. The impactor has an initial
velocity of −4.8 mm/ms and hits the hat shape component at the top center; the resulting velocity profile is
shown in Figure 5a. We employ the nodes-to-surface contact algorithm in LS-DYNA. The six empirical
failure constants are chosen as s1t = 0.06, s1c = 0.12, s2t = 0.035, s2c = 0.07, sdt = 0.3, and sdc = 0.6.

ρ [gr/mm3] E1 [GPa] E2 [GPa] ν12 µ [GPa]
1.54 × 10−3 127.8 8.567 0.33 4.85

Table 3. Material constants for the hat shape three-point bending test.

𝑦

𝑧
25.5 mm 25.5 mm

46.5 mm

60.2 mm

175.6 mm

(a) Setting: side view.

457.2 mm

400 mm𝑥

𝑦

186 mm

100 mm25 mm 25 mm

175.6 mm

(b) Setting: top view.

𝑥
𝑧

𝑦

(c) Setting: 3D view.

𝑥
𝑧

𝑦

Damage
0.86 -

0.50 -

0.00 -

(d) Deformed component: 3D view.

Figure 4. Hat shape three-point bending test: setting & deformed component.
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In Figure 4d, we present the deformed structure colored by damage, which includes in-plane and
delamination damage (see Ren et al. [2018]). The simulation shows a buckled sidewall as well as a damage
zone near the contact area; both phenomena have been observed experimentally (see Zhou et al. [2020]).
Finally, Figure 5b reports a comparison of the acceleration profile in time between the simulation and the
experimental data provided by Ford Motor Company. The acceleration in the simulation is computed by
dividing the reaction force experienced by the impactor by the impactor’s mass. The results show a close
match between the simulation and the experimental results.
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Figure 5. Hat shape three-point bending test: impactor’s velocity & acceleration curves
(experimental data provided by Ford Motor Company).
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4. SUMMARY

This report presents validation simulations for a peridynamic model of a FRC laminate proposed in Ren
et al. [2021]. We studied the elastic response of the peridynamic model by computing the off-axis elastic
modulus with tensile coupon test simulations as well as the flexural rigidity with three-point bending test
simulations for different fiber orientations, and we compared simulation results with analytical predictions
resulting in a close match between numerical and analytical values. The failure response of the peridynamic
model was also investigated using a hat shape three-point bending test simulation and comparing numerical
results with experimental data. The investigation included a quantitative comparison of acceleration curves
as well as a qualitative assessment of the structural deformation, which included sidewall buckling and
damage around the contact area, both resulting in a close match between the simulation and the
experiment. While additional studies are recommended to further investigate the sensitivity of numerical
results to various components of the peridynamic model, such as the choice of contact algorithm,
discretization, horizon, and delamination failure model, overall the results demonstrate that the proposed
peridynamic model can serve as an effective tool for the simulation of failure in CFRP composites.
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APPENDIX A. FLEXURAL RIGIDITY OF A FIBER REINFORCED COMPOSITE
LAMINATE

Assume a fiber reinforced composite laminate of length L, width b, and thickness h (along the z-direction)
composed of N laminae arranged in a certain stacking sequence. Each lamina is modeled as an orthotropic
medium in plane stress state with the following linear constitutive relation (see Reddy [2003]): σ1

σ2
σ6

 =

 Q11 Q12 0
Q12 Q22 0
0 0 Q66


 ε1
ε2
ε6

 , (17)

where, using Voigt notation, σ1, σ2, and σ6 are the components of the stress tensor, ε1, ε2, and ε6 are the
components of the infinitesimal strain tensor, and Q11,Q12,Q22, and Q66 are plane stress-reduced
stiffnesses given by (see Reddy [2003])

Q11 =
E1

1 − ν12ν21
, Q12 =

ν12E2

1 − ν12ν21
, Q22 =

E2

1 − ν12ν21
, and Q66 = µ, (18)

where E1 and E2 are the Young’s modulus along and perpendicular to the fiber orientation, respectively, ν12
is the corresponding Poisson’s ratio, and µ is the shear modulus; note that ν21 = ν12

E2
E1

(see Reddy [2003]).

In a laminate, each lamina has its material axes oriented possibly in a different orientation with respect to
the laminate coordinates. Thus, we apply a transformation to the plane stress-reduced stiffnesses of each
lamina. Let θk be the orientation of the kth lamina. Then, the transformed plane stress-reduced stiffnesses
for the kth lamina are given by (see Reddy [2003])

Q̄(k)
11 = Q11 cos4(θk) + 2(Q12 + 2Q66) sin2(θk) cos2(θk) + Q22 sin4(θk),

Q̄(k)
12 = (Q11 + Q22 − 4Q66) sin2(θk) cos2(θk) + Q12(sin4(θk) + cos4(θk)),

Q̄(k)
22 = Q11 sin4(θk) + 2(Q12 + 2Q66) sin2(θk) cos2(θk) + Q22 cos4(θk),

Q̄(k)
16 = (Q11 − Q12 − 2Q66) sin(θk) cos3(θk) + (Q12 − Q22 + 2Q66) sin3(θk) cos(θk),

Q̄(k)
26 = (Q11 − Q12 − 2Q66) sin3(θk) cos(θk) + (Q12 − Q22 + 2Q66) sin(θk) cos3(θk),

Q̄(k)
66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2(θk) cos2(θk) + Q66(sin4(θk) + cos4(θk)).

The kth lamina with width b and uniform thickness is given by material points with z-coordinates in the
range (zk, zk+1), where zk = −h/2 + (k − 1)∆z with ∆z = h/N; note that z1 = −h/2 and zN+1 = h/2. Then,
the elements of the bending stiffness tensor D are given by (see Reddy [2003])

Di j =
1
3

N∑
k=1

Q̄(k)
i j (z3

k+1 − z3
k). (19)

Let us consider a unidirectional laminate with orientation θ. In this case, Q̄(k)
i j = Q̄i j for all k, and we can

simplify (19) as follows:

Di j =
1
3

Q̄i j

N∑
k=1

(z3
k+1 − z3

k) =
1
3

Q̄i j(z3
N+1 − z3

1) =
h3

12
Q̄i j. (20)

The corresponding flexural rigidity, EIθ, is calculated as (see Reddy [2003])

EIθ =
b

(D−1)11
, (21)

where D−1 is the inverse of the bending stiffness tensor.
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